The closest normal structured matrix

Erna Begović Kovač

University of Zagreb ebegovic@fkit.hr

Joint work with Heike Faßbender and Philip Saltenberger (TU Braunschweig)

> ApplMath18 17 September 2018

This work has been supported in part by Croatian Science Foundation under the project 3670.

OUTLINE

- Introduction
- Structured matrices and structure-preserving transformations
- Jacobi-type algorithm for the reduction to the canonical form
- Finding the closest normal matrix with a given structure
- Numerical examples

INTRODUCTION

- Set of normal matrices: $\mathcal{N} = \{X : XX^* = X^*X\}$
- X is normal if and only if there is unitary U such that

$$
U^*XU=\bigg[\bigwedge\bigg].
$$

• A. Ruhe: Closest normal matrix finally found! BIT 27 (4) (1987) 585–598.

Does NOT preserve given matrix structure.

INTRODUCTION

- Set of normal matrices: $\mathcal{N} = \{X : XX^* = X^*X\}$
- X is normal if and only if there is unitary U such that

$$
U^*XU=\bigg[\bigwedge\bigg].
$$

• A. Ruhe: Closest normal matrix finally found! BIT 27 (4) (1987) 585–598. Does NOT preserve given matrix structure.

Suppose that A has a structure S, $A \in S$.

Minimization problem:

$$
\min\left\{\|A-X\|_F^2\ :\ X\in\mathcal{N}\cap\mathcal{S}\right\}
$$

MAXIMIZATION PROBLEM

Theorem (Causey 1964, Gabriel 1979)

Let $A \in \mathbb{C}^{n \times n}$ and let $X = ZDZ^*$, where Z is unitary and D is diagonal. Then X is a nearest normal matrix to A in the Frobenius norm if and only if

(a)
$$
||diag(Z^*AZ)||_F = \max_{QQ^* = I} ||diag(Q^*AQ)||_F
$$
, and
(b) $D = diag(Z^*AZ)$.

 \rightarrow Finding the closest normal matrix is equivalent to finding an unitary transformation that maximizes Frobenius norm of the diagonal.

 \rightarrow This theorem has to be modified to fulfill structure-preserving requirements.

[•] N. J. Higham: Matrix nearness problem and applications. In Applications of Matrix theory 22 (1989) 1–27.

STRUCTURED MATRICES

• Hamiltonian A (*J*-Hermitian):

$$
(JA)^* = JA
$$
, that is $A^* = JAJ$, where $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$.

We can write it as

$$
A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & -A_{11}^* \end{array} \right], \quad A_{12}^* = A_{12}, A_{21}^* = A_{21}.
$$

STRUCTURED MATRICES

• Hamiltonian A (*J*-Hermitian):

$$
(JA)^* = JA
$$
, that is $A^* = JAJ$, where $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$.

We can write it as

$$
A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & -A_{11}^* \end{array} \right], \quad A_{12}^* = A_{12}, A_{21}^* = A_{21}.
$$

• Skew-Hamiltonian A (J-skew-Hermitian):

$$
(JA)^* = -JA, \text{ that is } A^* = -JAJ.
$$

We can write it as

$$
A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{11}^* \end{array} \right], \qquad A_{12}^* = -A_{12}, \ A_{21}^* = -A_{21}.
$$

• For every skew-Hamiltonian W there is Hamiltonian H (and viceversa) such that $W = iH$.

Erna Begović Kovač **Erna [The closest normal structured matrix](#page-0-0)** 6 / 23

STRUCTURED MATRICES–cont.

• Per-Hermitian A (R -Hermitian):

 $(RA)^* = RA$, that is $A^* = RAR$, where $R =$ $\sqrt{ }$ $0 \cdots 0 1$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $0 \quad \mathbb{R}^{\mathbb{N}} \quad \longrightarrow \quad \frac{1}{2}$ $1 \quad 0 \quad \cdots \quad 0$ 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$.

 \rightarrow Hermitian about its anti-diagonal

• Perskew-Hermitian A (R -skew-Hermitian):

$$
(RA)^* = -RA
$$
, that is $A^* = -RAR$.

 \rightarrow Skew-Hermitian about its anti-diagonal

• For every perskew-Hermitian K there is per-Hermitian M (and viceversa) such that $K = iM$.

Erna Begovi´c Kovaˇc [The closest normal structured matrix](#page-0-0) 6 / 23

STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

 \rightarrow J-unitary

• For per-Hermitian and perskew-Hermitian

 \rightarrow R-unitary

STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

M is symplectic if $M^*JM = J$.

• For per-Hermitian and perskew-Hermitian

M is **perplectic** if $M^*RM = R$.

STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

M is symplectic if $M^*JM = J$.

• For per-Hermitian and perskew-Hermitian

M is **perplectic** if $M^*RM = R$.

Table: Geometric and algebraic setting for the structured matrices

CANONICAL FORM — HAMILTONIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal Hamiltonian $A \in \mathbb{C}^{2n \times 2n}$ there is unitary symplectic U such that

$$
U^*AU = \left[\begin{array}{cccc} D_1 & 0 & 0 & 0 \\ 0 & D_2 & 0 & D_3 \\ 0 & 0 & -D_1^* & 0 \\ 0 & -D_3 & 0 & D_2 \end{array}\right],
$$

where $D_j,\,j=1,2,3$ diagonal matrices, $D_1 \in \mathbb{C}^{n_1 \times n_1}$, $D_2 \in i \mathbb{R}^{n_2 \times n_2}$, $D_3 \in \mathbb{R}^{n_2 \times n_2}$, $n_1 + n_2 = n$.

$$
U^*AU = \left[\begin{array}{cc} \Lambda_1 & \Lambda_2 \\ -\Lambda_2 & -\Lambda_1^* \end{array}\right] = \left[\begin{array}{cc} \diagdown \\ \diagdown \\ \diagdown \end{array}\right] =: \Lambda_{\mathcal{H}}
$$

CANONICAL FORM — PER-HERMITIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal per-Hermitian $A \in \mathbb{C}^{2n \times 2n}$ there is unitary perplectic U such that

$$
U^*AU = \begin{bmatrix} D_1 & 0 & 0 & 0 \\ 0 & D_2 & D_3 & 0 \\ 0 & R D_3 R & R D_2 R & 0 \\ 0 & 0 & 0 & R D_1 R \end{bmatrix},
$$

where D_1 i D_2 are diagonal, and D_3 is antidiagonal matrix,

 $D_1 \in \mathbb{C}^{n_1 \times n_1}$, $D_2 \in \mathbb{R}^{n_2 \times n_2}$, $D_3 \in \mathbb{R}^{n_2 \times n_2}$, $n_1 + n_2 = n$.

$$
U^*AU = \left[\begin{array}{cc} \Lambda_1 & \Lambda_2 \\ R\Lambda_2R & R\Lambda_1^*R \end{array}\right] = \left[\begin{array}{cc} \diagup \\ \diagup \diagdown \end{array}\right] =: \Lambda_{\mathcal{P}}
$$

MAXIMIZATION ALGORITHM

$$
\max_{ZZ^*=I, \ Z \in Sp_{2n}(\mathbb{C})} \{ f_{\mathcal{H}}(Z) := ||diag(Z^*AZ)||_F^2 + ||diag(JZ^*AZ)||_F^2 \}
$$

• Iterative algorithm of the form

$$
A^{(k+1)}=R_k^*A^{(k)}R_k, \quad k\geq 0.
$$

• Transformations R_k are structure-preserving rotations obtained by embedding two Jacobi rotations

$$
\left[\begin{array}{cc} c & -s \\ s & c \end{array}\right] := \left[\begin{array}{cc} \cos \phi & -e^{i\alpha} \sin \phi \\ e^{-i\alpha} \sin \phi & \cos \phi \end{array}\right] \text{ in } I_{2n}.
$$

They are chosen to maximize

$$
\|\text{diag}(A^{(k+1)})\|_F^2 + \|\text{diag}(JA^{(k+1)})\|_F^2.
$$

D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices. Electron. J. Linear Al. 10 (2003) 106–145.

Erna Begovi´c Kovaˇc [The closest normal structured matrix](#page-0-0) 10 / 23

MAXIMIZATION ALGORITHM

$$
\max_{ZZ^*=I, \ Z \in P_{p_{2n}}(\mathbb{C})} \{ f_{\mathcal{P}}(Z) := ||diag(Z^*AZ)||^2_F + ||diag(RZ^*AZ)||^2_F \}
$$

• Iterative algorithm of the form

$$
A^{(k+1)}=R_k^*A^{(k)}R_k, \quad k\geq 0.
$$

• Transformations R_k are structure-preserving rotations obtained by embedding two Jacobi rotations

$$
\left[\begin{array}{cc} c & -s \\ s & c \end{array}\right] := \left[\begin{array}{cc} \cos \phi & -e^{i\alpha} \sin \phi \\ e^{-i\alpha} \sin \phi & \cos \phi \end{array}\right] \text{ in } I_{2n}.
$$

They are chosen to maximize

$$
\|\text{diag}(A^{(k+1)})\|_F^2 + \|\text{diag}(RA^{(k+1)})\|_F^2.
$$

D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices. Electron. J. Linear Al. 10 (2003) 106–145.

Erna Begovi´c Kovaˇc [The closest normal structured matrix](#page-0-0) 10 / 23

SYMPLECTIC ROTATIONS

Erna Begović Kovač **Erna [The closest normal structured matrix](#page-0-0)** 11 / 23

PIVOT POSITIONS (SYMPLECTIC)

PIVOT POSITIONS (SYMPLECTIC)

PERPLECTIC ROTATIONS

Erna Begović Kovač **Erna [The closest normal structured matrix](#page-0-0)** 13 / 23

PIVOT POSITIONS (PERPLECTIC)

PIVOT POSITIONS (PERPLECTIC)

REDUCTION TO CANONICAL FORM

Jacobi algorithm

Input: $A \in \mathbb{C}^{2n \times 2n} \in \mathcal{S}$, $Z_0 = I$ Output: structure-preserving unitary Z **REPEAT** Select (i_k, j_k) . Find ϕ_k and α_k . Form rotation matrix $R(i_k, i_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^* A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$ UNTIL convergence

REDUCTION TO CANONICAL FORM

Jacobi algorithm

Input: $A \in \mathbb{C}^{2n \times 2n} \in \mathcal{S}$, $Z_0 = I$ **Output:** structure-preserving unitary Z **REPEAT** Select (i_k, i_k) . Find ϕ_k and α_k . Form rotation matrix $R(i_k, i_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^* A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$ UNTIL convergence

- Cyclic pivot strategy
- Convergence condition:

 $|\langle \text{grad} f(Z), \overline{Z}R(i_k, i_k, 0, \alpha_k) \rangle| > \eta || \text{grad} f(Z) ||_F$

where $\dot{R}(i,j,\phi,\alpha)=\frac{\partial}{\partial\phi}R(i,j,\phi,\alpha)$ and $f=f_{\mathcal{H}}$ or $f=f_{\mathcal{P}}$.

THE CLOSEST NORMAL MATRIX

- Let A be Hamiltonian. Analogy with unstructured case:
	- (i) Find Z that maximizes $f_{\mathcal{H}}(Z) = ||diag(Z^*AZ)||_F^2 + ||diag(JZ^*AZ)||_F^2,$
	- (ii) Extract the canonical form,

(iii) Solution is given by
$$
X = Z
$$
 $\left[\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right]Z^*$.

 \rightarrow But this can produce a matrix that is not normal!

THE CLOSEST NORMAL MATRIX

- Let A be Hamiltonian. Analogy with unstructured case:
	- (i) Find Z that maximizes $f_{\mathcal{H}}(Z) = ||diag(Z^*AZ)||_F^2 + ||diag(JZ^*AZ)||_F^2,$
	- (ii) Extract the canonical form,

(iii) Solution is given by
$$
X = Z
$$
 $\Bigg[\begin{matrix} x \\ y \end{matrix}\Bigg]Z^*$.

 \rightarrow But this can produce a matrix that is not normal!

• All that can be done is to take

$$
\operatorname{diag}(Z^*AZ) = \left[\begin{array}{cc} \Lambda_1 & \\ & -\Lambda_1^* \end{array} \right] = \left[\begin{array}{cc} \diagdown \\ & \diagdown \end{array} \right] =: \mathcal{D}.
$$

THE CLOSEST NORMAL MATRIX–cont.

• We set

$$
f_{\mathcal{D}}(Z)=\|\mathrm{diag}(Z^*AZ)\|_F^2.
$$

- (i) Find Z that maximizes f_D . (ii) Extract the diagonal. (iii) Solution is given by $X = Z$ $\sqrt{ }$ $\overline{}$ \searrow \searrow 1 $\overline{}$ Z ∗ .
- To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations

$$
R(i, n+i, \phi, 0) = \left[\begin{array}{cc} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{array}\right] \begin{array}{c} i \\ n+i \end{array}
$$

• Symplectic rotations

• Symplectic rotations

$$
R(i, n+i, \phi, 0) = \left[\begin{array}{cc} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{array}\right]_{n+i}
$$

• Perplectic rotations

$$
R(i, 2n-i+1, \phi, -\frac{\pi}{2}) = \left[\begin{array}{cc} \cos\phi & i\sin\phi \\ i\sin\phi & \cos\phi \end{array}\right]_{2n-i+1}i
$$

• Symplectic rotations

$$
R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \\ n+i \end{bmatrix} \begin{bmatrix} i \\ n+i \end{bmatrix}
$$

• Perplectic rotations

 \rightsquigarrow

CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{H}}$.

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm with additional rotations. Every accumulation point of $(Z_k)_k$ is a stationary point of function f_D .

CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{H}}$.

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm with additional rotations. Every accumulation point of $(Z_k)_k$ is a stationary point of function f_D .

- M. Ishteva, P.-A. Absil, P. Van Dooren: Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors. SIAM J. Matrix Anal. Appl. 34(2) (2013) 651–672.
- **•** E. Begović Kovač. D. Kressner: Structure-preserving low multilinear rank approximation of antisymmetric tensors. SIAM. J. Matrix Anal. Appl. 38(3) (2017) 967–983.

Erna Begović Kovač **[The closest normal structured matrix](#page-0-0)** 19 / 23

NUMERICAL EXAMPLES — Canonical form

Erna Begović Kovač **Erna [The closest normal structured matrix](#page-0-0)** 20 / 23

NUMERICAL EXAMPLES — Canonical form

Reduction to the canonical form after 10 cycles.

NUMERICAL EXAMPLES — Diagonalization

Erna Begović Kovač **[The closest normal structured matrix](#page-0-0)** 21 / 23 / 23

NUMERICAL EXAMPLES — Diagonalization

Erna Begović Kovač **[The closest normal structured matrix](#page-0-0)** 21 / 23 / 23

NUMERICAL EXAMPLES — Convergence

Erna Begović Kovač **Erna [The closest normal structured matrix](#page-0-0)** 22 / 23

THANK YOU!