The closest normal structured matrix

Erna Begović Kovač

University of Zagreb ebegovic@fkit.hr

Joint work with Heike Faßbender and Philip Saltenberger (TU Braunschweig)

ApplMath18 17 September 2018

This work has been supported in part by Croatian Science Foundation under the project 3670.

OUTLINE

- Introduction
- Structured matrices and structure-preserving transformations
- Jacobi-type algorithm for the reduction to the canonical form
- Finding the closest normal matrix with a given structure
- Numerical examples

INTRODUCTION

- Set of normal matrices: $\mathcal{N} = \{X : XX^* = X^*X\}$
- X is normal if and only if there is unitary U such that

$$U^*XU = \left[\ \searrow \ \right].$$

• A. Ruhe: *Closest normal matrix finally found!* BIT 27 (4) (1987) 585–598.

Does NOT preserve given matrix structure.

INTRODUCTION

- Set of normal matrices: $\mathcal{N} = \{X : XX^* = X^*X\}$
- X is normal if and only if there is unitary U such that

$$U^*XU = \left[\ \searrow \ \right].$$

 A. Ruhe: Closest normal matrix finally found! BIT 27 (4) (1987) 585–598.
 Does NOT preserve given matrix structure.

Suppose that A has a structure S, $A \in S$.

Minimization problem:

$$\min\left\{\|A-X\|_F^2 : X \in \mathcal{N} \cap \mathcal{S}\right\}$$

MAXIMIZATION PROBLEM

Theorem (Causey 1964, Gabriel 1979)

Let $A \in \mathbb{C}^{n \times n}$ and let $X = ZDZ^*$, where Z is unitary and D is diagonal. Then X is a nearest normal matrix to A in the Frobenius norm if and only if

(a)
$$\|\text{diag}(Z^*AZ)\|_F = \max_{QQ^*=I} \|\text{diag}(Q^*AQ)\|_F$$
, and
(b) $D = \text{diag}(Z^*AZ)$.

 \rightarrow Finding the closest normal matrix is equivalent to finding an unitary transformation that maximizes Frobenius norm of the diagonal.

 \rightarrow This theorem has to be modified to fulfill structure-preserving requirements.

• N. J. Higham: *Matrix nearness problem and applications*. In Applications of Matrix theory 22 (1989) 1–27.

Erna Begović Kovač

STRUCTURED MATRICES

• Hamiltonian A (J-Hermitian):

$$(JA)^* = JA$$
, that is $A^* = JAJ$, where $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$.

We can write it as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & -A_{11}^* \end{bmatrix}, \qquad A_{12}^* = A_{12}, \ A_{21}^* = A_{21}.$$

-

-

STRUCTURED MATRICES

• Hamiltonian A (J-Hermitian):

$$(JA)^* = JA$$
, that is $A^* = JAJ$, where $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$

-

-

We can write it as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & -A_{11}^* \end{bmatrix}, \qquad A_{12}^* = A_{12}, \ A_{21}^* = A_{21}.$$

• **Skew-Hamiltonian** *A* (*J*-skew-Hermitian):

$$(JA)^* = -JA$$
, that is $A^* = -JAJ$.

We can write it as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{11}^* \end{bmatrix}, \qquad A_{12}^* = -A_{12}, \ A_{21}^* = -A_{21}.$$

• For every skew-Hamiltonian W there is Hamiltonian H (and viceversa) such that W = iH.

Erna Begović Kovač

STRUCTURED MATRICES-cont.

• **Per-Hermitian** *A* (*R*-Hermitian):

$$(RA)^* = RA,$$
 that is $A^* = RAR,$
where $R = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & 0 \\ 0 & \ddots & & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix}.$

 \rightarrow Hermitian about its anti-diagonal

• **Perskew-Hermitian** *A* (*R*-skew-Hermitian):

$$(RA)^* = -RA$$
, that is $A^* = -RAR$.

 \rightarrow Skew-Hermitian about its anti-diagonal

• For every perskew-Hermitian K there is per-Hermitian M (and viceversa) such that K = iM.

Erna Begović Kovač

STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

 \rightarrow *J*-unitary

• For per-Hermitian and perskew-Hermitian

 \rightarrow *R*-unitary

STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

M is **symplectic** if $M^*JM = J$.

• For per-Hermitian and perskew-Hermitian

M is **perplectic** if $M^*RM = R$.

STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

M is **symplectic** if $M^*JM = J$.

• For per-Hermitian and perskew-Hermitian

M is **perplectic** if $M^*RM = R$.

manifold	tangent subspace at I	orthogonal subspace at <i>I</i>
symplectic	Hamiltonian	skew-Hamiltonian
perplectic	perskew-Hermitian	per-Hermitian
Lie group	Lie algebra	Jordan algebra

Table: Geometric and algebraic setting for the structured matrices

CANONICAL FORM — HAMILTONIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal Hamiltonian $A \in \mathbb{C}^{2n \times 2n}$ there is unitary symplectic U such that

$$U^*AU=\left[egin{array}{cccc} D_1 & 0 & 0 & 0\ 0 & D_2 & 0 & D_3\ 0 & 0 & -D_1^* & 0\ 0 & -D_3 & 0 & D_2 \end{array}
ight],$$

where D_j , j = 1, 2, 3 diagonal matrices, $D_1 \in \mathbb{C}^{n_1 \times n_1}$, $D_2 \in i \mathbb{R}^{n_2 \times n_2}$, $D_3 \in \mathbb{R}^{n_2 \times n_2}$, $n_1 + n_2 = n$.

$$U^*AU = \begin{bmatrix} \Lambda_1 & \Lambda_2 \\ -\Lambda_2 & -\Lambda_1^* \end{bmatrix} = \begin{bmatrix} \ddots & \ddots \\ \ddots & \ddots \end{bmatrix} =: \Lambda_{\mathcal{H}}$$

CANONICAL FORM — PER-HERMITIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal per-Hermitian $A \in \mathbb{C}^{2n \times 2n}$ there is unitary perplectic U such that

$$U^*AU = \begin{bmatrix} D_1 & 0 & 0 & 0\\ 0 & D_2 & D_3 & 0\\ 0 & RD_3R & RD_2R & 0\\ 0 & 0 & 0 & RD_1R \end{bmatrix},$$

where D_1 i D_2 are diagonal, and D_3 is antidiagonal matrix,

 $D_1 \in \mathbb{C}^{n_1 \times n_1}$, $D_2 \in \mathbb{R}^{n_2 \times n_2}$, $D_3 \in \mathbb{R}^{n_2 \times n_2}$, $n_1 + n_2 = n$.

MAXIMIZATION ALGORITHM

$$\max_{ZZ^*=I, Z \in Sp_{2n}(\mathbb{C})} \left\{ f_{\mathcal{H}}(Z) := \| \operatorname{diag}(Z^*AZ) \|_F^2 + \| \operatorname{diag}(JZ^*AZ) \|_F^2 \right\}$$

• Iterative algorithm of the form

$$A^{(k+1)} = R_k^* A^{(k)} R_k, \quad k \ge 0.$$

• Transformations *R_k* are structure-preserving rotations obtained by embedding **two Jacobi rotations**

$$\left[\begin{array}{cc} c & -s \\ s & c \end{array}\right] := \left[\begin{array}{cc} \cos \phi & -e^{\imath \alpha} \sin \phi \\ e^{-\imath \alpha} \sin \phi & \cos \phi \end{array}\right] \qquad \text{in } I_{2n}.$$

They are chosen to maximize

$$\|\text{diag}(A^{(k+1)})\|_{F}^{2} + \|\text{diag}(JA^{(k+1)})\|_{F}^{2}$$

 D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices. Electron. J. Linear Al. 10 (2003) 106–145.

Erna Begović Kovač

MAXIMIZATION ALGORITHM

$$\max_{ZZ^*=I, Z \in Pp_{2n}(\mathbb{C})} \left\{ f_{\mathcal{P}}(Z) := \| \operatorname{diag}(Z^*AZ) \|_F^2 + \| \operatorname{diag}(RZ^*AZ) \|_F^2 \right\}$$

• Iterative algorithm of the form

$$A^{(k+1)} = R_k^* A^{(k)} R_k, \quad k \ge 0.$$

• Transformations R_k are structure-preserving rotations obtained by embedding two Jacobi rotations

$$\left[\begin{array}{cc} c & -s \\ s & c \end{array}\right] := \left[\begin{array}{cc} \cos \phi & -e^{\imath \alpha} \sin \phi \\ e^{-\imath \alpha} \sin \phi & \cos \phi \end{array}\right] \qquad \text{in } I_{2n}.$$

They are chosen to maximize

$$\|\text{diag}(A^{(k+1)})\|_F^2 + \|\text{diag}(RA^{(k+1)})\|_F^2.$$

 D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices. Electron. J. Linear Al. 10 (2003) 106–145.

Erna Begović Kovač

SYMPLECTIC ROTATIONS

PIVOT POSITIONS (SYMPLECTIC)

PIVOT POSITIONS (SYMPLECTIC)

PERPLECTIC ROTATIONS

PIVOT POSITIONS (PERPLECTIC)

PIVOT POSITIONS (PERPLECTIC)

REDUCTION TO CANONICAL FORM

Jacobi algorithm

Input: $A \in \mathbb{C}^{2n \times 2n} \in S$, $Z_0 = I$ **Output:** structure-preserving unitary ZREPEAT Select (i_k, j_k) . Find ϕ_k and α_k . Form rotation matrix $R(i_k, j_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^* A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$ UNTIL convergence

REDUCTION TO CANONICAL FORM

Jacobi algorithm

Input: $A \in \mathbb{C}^{2n \times 2n} \in S$, $Z_0 = I$ **Output:** structure-preserving unitary ZREPEAT Select (i_k, j_k) . Find ϕ_k and α_k . Form rotation matrix $R(i_k, j_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^* A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$ UNTIL convergence

- Cyclic pivot strategy
- Convergence condition:

 $|\langle \operatorname{grad} f(Z), Z\dot{R}(i_k, j_k, 0, \alpha_k) \rangle| \geq \eta \|\operatorname{grad} f(Z)\|_F,$

where $\dot{R}(i, j, \phi, \alpha) = \frac{\partial}{\partial \phi} R(i, j, \phi, \alpha)$ and $f = f_{\mathcal{H}}$ or $f = f_{\mathcal{P}}$.

Erna Begović Kovač

THE CLOSEST NORMAL MATRIX

- Let A be Hamiltonian. Analogy with unstructured case:
 - (i) Find Z that maximizes $f_{\mathcal{H}}(Z) = \|\text{diag}(Z^*AZ)\|_F^2 + \|\text{diag}(JZ^*AZ)\|_F^2$,
 - (ii) Extract the canonical form,

(iii) Solution is given by
$$X = Z \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} Z^*.$$

 \rightarrow But this can produce a matrix that is not normal!

THE CLOSEST NORMAL MATRIX

- Let A be Hamiltonian. Analogy with unstructured case:
 - (i) Find Z that maximizes $f_{\mathcal{H}}(Z) = \|\text{diag}(Z^*AZ)\|_F^2 + \|\text{diag}(JZ^*AZ)\|_F^2$
 - (ii) Extract the canonical form,

(iii) Solution is given by
$$X = Z \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} Z^*.$$

 \rightarrow But this can produce a matrix that is not normal!

• All that can be done is to take

diag
$$(Z^*AZ) = \begin{bmatrix} \Lambda_1 \\ & -\Lambda_1^* \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} =: \mathcal{D}.$$

THE CLOSEST NORMAL MATRIX-cont.

We set

$$f_{\mathcal{D}}(Z) = \|\mathsf{diag}(Z^*AZ)\|_F^2.$$

• To find Z that maximizes f_D we add new rotations to the Jacobi algorithm.

Erna Begović Kovač

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

• Symplectic rotations

Erna Begović Kovač

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

• Perplectic rotations

$$R(i,2n-i+1,\phi,-\frac{\pi}{2}) = \begin{bmatrix} \cos\phi & i\sin\phi \\ i\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} i \\ 2n-i+1 \end{bmatrix}$$

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

• Perplectic rotations

 $\sim \rightarrow$

CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{H}}$.

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm with additional rotations. Every accumulation point of $(Z_k)_k$ is a stationary point of function f_D .

CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{H}}$.

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm with additional rotations. Every accumulation point of $(Z_k)_k$ is a stationary point of function f_D .

- M. Ishteva, P.-A. Absil, P. Van Dooren: Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors.
 SIAM J. Matrix Anal. Appl. 34(2) (2013) 651–672.
- E. Begović Kovač, D. Kressner: Structure-preserving low multilinear rank approximation of antisymmetric tensors.
 SIAM, J. Matrix Anal. Appl. 38(3) (2017) 967–983.

Erna Begović Kovač

NUMERICAL EXAMPLES — Canonical form

NUMERICAL EXAMPLES — Canonical form

NUMERICAL EXAMPLES — Diagonalization

NUMERICAL EXAMPLES — Diagonalization

NUMERICAL EXAMPLES — Convergence

Erna Begović Kovač

THANK YOU!