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OUTLINE

e Introduction

e Structured matrices
and structure-preserving transformations

e Jacobi-type algorithm
for the reduction to the canonical form

e Finding the closest normal matrix with a given structure

e Numerical examples
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INTRODUCTION

e Set of normal matrices: /' = {X : XX* = X*X}

e X is normal if and only if there is unitary U such that
U XU = [ AN ]

e A. Ruhe: Closest normal matrix finally found!
BIT 27 (4) (1987) 585-598.

Does NOT preserve given matrix structure.
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INTRODUCTION

e Set of normal matrices: /' = {X : XX* = X*X}

e X is normal if and only if there is unitary U such that
U XU = [ AN ]

e A. Ruhe: Closest normal matrix finally found!
BIT 27 (4) (1987) 585-598.

Does NOT preserve given matrix structure.

Suppose that A has a structure S, A€ S.

Minimization problem:

min {|[A- X[ : X e N NS}
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MAXIMIZATION PROBLEM

Theorem (Causey 1964, Gabriel 1979)

Let A€ C"™" and let X = ZDZ*, where Z is unitary and D is
diagonal. Then X is a nearest normal matrix to A in the Frobenius
norm if and only if

(2) ||diag(Z°AZ)||r = max [|diag(Q"AQ)|F, and
(b) D = diag(Z*AZ).

— Finding the closest normal matrix is equivalent to finding an
unitary transformation that maximizes Frobenius norm of the
diagonal.

— This theorem has to be modified to fulfill structure-preserving

requirements.

® N. J. Higham: Matrix nearness problem and applications.
In Applications of Matrix theory 22 (1989) 1-27.
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STRUCTURED MATRICES

e Hamiltonian A (J-Hermitian):

(JA)* = JA, thatis A* = JAJ, where J= { 0 ! ]

-/ 0

We can write it as

Air Ar " "
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STRUCTURED MATRICES

e Hamiltonian A (J-Hermitian):

(JA)* = JA, thatis A* = JAJ, where J= { ol ]

We can write it as

A [ Al A

AT = A, AL = Aoy
Asq _AI1:| 12 12 21 21

e Skew-Hamiltonian A (J-skew-Hermitian):
(JAY* = —JA, thatis A* = —JAJ.

We can write it as

Anir A " "
A= , = A, AL = A
[ A Ap ] 12 2 2

e For every skew-Hamiltonian W there is Hamiltonian H (and
viceversa) such that W =H.
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STRUCTURED MATRICES—cont.
e Per-Hermitian A (R-Hermitian):

(RA)* = RA, that is A* = RAR,

where R = 0
o - :
1 0 - 0

— Hermitian about its anti-diagonal

o Perskew-Hermitian A (R-skew-Hermitian):
(RA)* = —RA, thatis A* = —RAR.
— Skew-Hermitian about its anti-diagonal

e For every perskew-Hermitian K there is per-Hermitian M (and
viceversa) such that K =M.
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STRUCTURE-PRESERVING TRANSFORMATIONS

e For Hamiltonian and skew-Hamiltonian

— J-unitary

e For per-Hermitian and perskew-Hermitian

— R-unitary
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STRUCTURE-PRESERVING TRANSFORMATIONS

e For Hamiltonian and skew-Hamiltonian

M is symplectic if M*JM = J.

e For per-Hermitian and perskew-Hermitian

M is perplectic if M*RM = R.
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STRUCTURE-PRESERVING TRANSFORMATIONS

e For Hamiltonian and skew-Hamiltonian

M is symplectic if M*JM = J.

e For per-Hermitian and perskew-Hermitian

M is perplectic if M*RM = R.

] manifold \ tangent subspace at / \ orthogonal subspace at / ‘

symplectic Hamiltonian skew-Hamiltonian
perplectic perskew-Hermitian per-Hermitian
’ Lie group ‘ Lie algebra ‘ Jordan algebra ‘

Table: Geometric and algebraic setting for the structured matrices
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CANONICAL FORM — HAMILTONIAN

Theorem (BK, FaBbender, Saltenberger)

For every normal Hamiltonian A € C27%2" there is unitary
symplectic U such that

Dy O 0 0

0 D, 0 Ds

0 0 -Df 0 |’

0 -D; 0 D,

where D;, j = 1,2, 3 diagonal matrices,

Dy e Cm*Mm D, € {R™*M D3 e R™*"™ py + ny = n.

NN ANERN
SRR NN

U AU =

U*AU = [ — Ay
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CANONICAL FORM — PER-HERMITIAN

Theorem (BK, FaBbender, Saltenberger)

For every normal per-Hermitian A € C2"%2" there is unitary
perplectic U such that

D 0 0 0

0 D, D3 0

0 RD;R RD,R 0 J

0 0 0  RDiR

where Dj i Dy are diagonal, and D3 is antidiagonal matrix,
Dy e Cm*m D, € R™*" D3 € R™%M" ny + ny = n.

M N2 }: \ /
RA2R RAIR / \

U AU =

U*AU = [ — Ap

Erna Begovi¢ Kovat The closest normal structured matrix 9 /23



MAXIMIZATION ALGORITHM

f(Z) = ||diag(Z*AZ)||% + ||diag(JZ*AZ)||?
ZZ*:/,mzanszn(C){ n(Z) = ||diag( )7 + [|diag( e}

e |terative algorithm of the form
A+ — REAIR, k> 0.

e Transformations Ry are structure-preserving rotations
obtained by embedding two Jacobi rotations
[ c —s ] . [ cos ¢ —e'*sin ¢

. in b,.
s ¢ e “sin ¢ cos ¢ 2n

They are chosen to maximize
Idiag(A®T1)||E + ||diag(JAK D).

® D.S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices.
Electron. J. Linear Al. 10 (2003) 106-145.
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MAXIMIZATION ALGORITHM

(7)) = lldiag(Z*AZ)I% diag(RZ*AZ)|2
Zz*::,n}anszn(c){ P(2) = diag( Ml + | diag( 13

e |terative algorithm of the form
A+ — REAIR, k> 0.

e Transformations Ry are structure-preserving rotations
obtained by embedding two Jacobi rotations
[ c —s ] . [ cos ¢ —e'*sin ¢

. in b,.
s ¢ e “sin ¢ cos ¢ 2n

They are chosen to maximize
Idiag(A®T)[|E + [[diag(RATD)| .

® D.S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices.
Electron. J. Linear Al. 10 (2003) 106-145.
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SYMPLECTIC ROTATIONS

c —s i
s c J
R(i.j, ¢,a) =
c -5 n+i
5 c n+j
c —-s i
c -5 j—n
R(i.j, ¢,a) =
s c n—+1i
5 c J
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PIVOT POSITIONS (SYMPLECTIC
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PIVOT POSITIONS (SYMPLECTIC
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PERPLECTIC ROTATIONS

c -5 i
s c J
R(ij, ¢, ) =
c 5 2n—j+1
—s c 2n—i+1
c -5 i
c 5 2n—j+1
R(i.j, ¢, ) =
s c J
-5 c 2n—i+1
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PIVOT POSITIONS (PERPLECTIC)
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PIVOT POSITIONS (PERPLEC
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REDUCTION TO CANONICAL FORM

Jacobi algorithm

Input: Ac C>"*?nc S, Zy=1
Output: structure-preserving unitary Z
REPEAT
Select (ik, jk).
Find ¢y and .
Form rotation matrix R(ik, jk, Pk, tk)-
A(k+1) _ R:A(k)Rk
Ziy1 = Zi Ry
UNTIL convergence
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REDUCTION TO CANONICAL FORM

Jacobi algorithm

Input: Ac C>"*?nc S, Zy=1
Output: structure-preserving unitary Z
REPEAT
Select (ik, jk).
Find ¢y and .
Form rotation matrix R(ik, jk, Pk, tk)-
A(k+1) _ R:A(k)Rk
Ziy1 = Zi Ry
UNTIL convergence

e Cyclic pivot strategy
e Convergence condition:
|(gradf(Z), ZR (i, jx, 0, )| > nllgradf(2)] F,
where R(i,j, ¢, a) = %R(i,j, $,a) and f = fy or f = fp.

Erna Begovi¢ Kovat The closest normal structured matrix 15 / 23



THE CLOSEST NORMAL MATRIX

e Let A be Hamiltonian. Analogy with unstructured case:

(i) Find Z that maximizes
Fu(Z) = ||diag(Z*AZ)|| + ||diag(JZ*AZ)|IZ,

(ii) Extract the canonical form,
\ \ z*.

NN

— But this can produce a matrix that is not normal!

(iii) Solution is given by X = Z
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THE CLOSEST NORMAL MATRIX

e Let A be Hamiltonian. Analogy with unstructured case:

(i) Find Z that maximizes
Fu(Z) = ||diag(Z*AZ)|| + ||diag(JZ*AZ)|IZ,

(ii) Extract the canonical form,
\ \ z*.

NN

— But this can produce a matrix that is not normal!

(iii) Solution is given by X = Z

e All that can be done is to take

N

diag(Z*AZ) = [ M As } = —:D.
-1

N
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THE CLOSEST NORMAL MATRIX-cont.

e We set
fp(Z) = ||diag(Z*AZ)| .

(i) Find Z that maximizes fp.
(ii) Extract the diagonal.

N

(iii) Solution is given by X = Z zZ*.

N

e To find Z that maximizes fp we add new rotations to the
Jacobi algorithm.
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ADDITIONAL ROTATIONS

e Symplectic rotations

cos ¢ —sing i
R(i,n+i,,0) =
( ¢ ) sin ¢ cos ¢ n+i
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ADDITIONAL ROTATIONS

e Symplectic rotations
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ADDITIONAL ROTATIONS

e Symplectic rotations

cos ¢ —sing i
R(i,n+1i,¢,0)=
sin ¢ cos ¢ n+i
e Perplectic rotations
T cos ¢ 2sin ¢ i
R(i,2n—i+1,¢,——) =
2 2sin ¢ cos ¢ 2n—i+1
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ADDITIONAL ROTATIONS

e Symplectic rotations

cos ¢ —sing i
R(i,n+1i,¢,0)=
sin ¢ cos ¢ n+i
e Perplectic rotations
r o o o o0 O O O e T
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o0 0 0
o O ©
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o
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CONVERGENCE
Theorem (BK, FaBbender, Saltenberger)

Let A be Hamiltonian and let (Zx)x be a sequence of unitary
symplectic matrices generated by the Jacobi algorithm. Every
accumulation point of (Zx) is a stationary point of function fy.

Theorem (BK, FaBbender, Saltenberger)

Let A be Hamiltonian and let (Zx)x be a sequence of unitary
symplectic matrices generated by the Jacobi algorithm

with additional rotations. Every accumulation point of (Zx) is a
stationary point of function fp.
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CONVERGENCE
Theorem (BK, FaBbender, Saltenberger)

Let A be Hamiltonian and let (Zx)x be a sequence of unitary
symplectic matrices generated by the Jacobi algorithm. Every
accumulation point of (Zx) is a stationary point of function fy.

Theorem (BK, FaBbender, Saltenberger)

Let A be Hamiltonian and let (Zx)x be a sequence of unitary
symplectic matrices generated by the Jacobi algorithm

with additional rotations. Every accumulation point of (Zx) is a
stationary point of function fp.

® M. Ishteva, P-A. Absil, P. Van Dooren: Jacobi algorithm for the best low multilinear rank approximation
of symmetric tensors.
SIAM J. Matrix Anal. Appl. 34(2) (2013) 651-672.

® E. Begovi¢ Kovat, D. Kressner: Structure-preserving low multilinear rank approximation of antisymmetric

tensors.
SIAM. J. Matrix Anal. Appl. 38(3) (2017) 967-983.
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NUMERICAL EXAMPLES — Canonical form
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Random Hamiltonian 20 x 20 matrix.
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NUMERICAL EXAMPLES — Canonical form
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Reduction to the canonical form after 10 cycles.
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NUMERICAL EXAMPLES — Diagonalization

5 10 15 20

Random Hamiltonian 20 x 20 matrix.
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NUMERICAL EXAMPLES — Diagonalization

5 10 15 20

Diagonalization after 10 cycles.
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NUMERICAL EXAMPLES — Convergence

45
* - orm(canonical(A))
w —e— norm(canonical(8))
...................................... 30 B orm(A)
35
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(a) Random Hamiltonian 30 x 30 (b) Normal Hamiltonian 30 x 30
18 rm(diag(A))

—e— norm(diag(B))
<eeeeeeemiOrm(A)

0

Normal Hamiltonian 30 x 30 with no purely imaginary eigenvalue
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THANK YOU!



